Ce-Fe-P (Cerium-Iron-Phosphorus)

V. Raghavan

Recently, Chikhrii et al. [1997Chi] determined isothermal sections for this system at \sim 800 °C for 0-30 at.% Ce and at \sim 590 °C for 30-70 at.% Ce.

Binary Systems

The Ce-Fe phase diagram [1993Zha] depicts two stoichiometric compounds, Ce_2Fe_{17} and $CeFe_2$, both forming peritectically. Ce_2Fe_{17} has two crystal modifications (hexagonal and rhombohedral). $CeFe_2$ has the cubic MgCu₂ type structure. The Ce-P phase diagram is not known. Three intermediate compounds are known: CeP (cubic, NaCl type), CeP_2 (monoclinic), and CeP_5 (monoclinic). A partial phase diagram is known for the Fe-P system [1982Kub]. The intermediate compound Fe_3P forms through a peritectic reaction at 1166 °C between liquid and Fe_2P . Fe_2P forms congruently at 1370 °C. Fe_3P is body-centered tetragonal with the Ni₃P type of structure. Fe_2P has the hexagonal C22 structure. The other intermediate phases at higher P contents are FeP (orthorhombic MnP type), FeP₂ [orthorhombic FeS₂ (marcasite) type], and FeP₄ (monoclinic).

Ternary Compounds

Three ternary compounds are known in this system. CeFe₂P₂ (τ_1) has the Al₄Ba-type tetragonal structure [1985Jei]. Ce₂Fe₁₂P₇ (τ_2) has the Zr₂Fe₁₂P₇-type hexagonal structure [1984Jei]. $CeFe_4P_{12}$ (τ_3) has the LaFe_4P_{12}-type cubic structure [1977Jei]. Table 1 lists the structural details of these compounds.

Ternary Isothermal Section

With starting materials of purity of 99.9% Ce, 99.99% Fe, and 99.89% P, [1997Chi] prepared 36 alloy compositions. For compositions up to 33.3 at.% P, the alloys were melted in an arc furnace. For higher P contents, the powder mixtures were sintered by slow heating up to 800 °C. The samples were finally annealed for 500 h at 1070 K for compositions with \leq 30 at.% Ce and at 870 K for compositions with 30-70 at.% Ce and quenched in water. The phase equilibria were studied by x-ray powder diffraction. The isothermal sections determined by [1997Chi] at 797 °C (1070 K) for 0-30 at.% Ce and at ~590 °C for 30-70 at.% Ce are presented as a composite section in Fig. 1. The temperature of anneal for the higher Ce content alloys is assumed here to be just below the eutectic temperature (592 °C) of the Fe-Ce system, as no liquid phase is indicated by [1997Chi]. The ternary compounds τ_1 and τ_2 are present at 797 °C. The composition of the ternary compound τ_3 falls outside the range investigated by [1997Chi]. No homogeneity ranges were found for the ternary compounds. The third component solubility in the binary compounds is negligible.

Fig. 1 Ce-Fe-P isothermal section at 797 °C (0-30 at.% Ce) and at ~590 °C (30-70 at.% Ce) [1997Chi]. Narrow two-phase regions around tie-triangles are omitted.

	Composition,				Lattice	
Phase	at.%	Pearson Symbol	Space Group	Prototype	Parameter, nm	Reference
CeFe ₂ P ₂	20 Ce	<i>tI</i> 10	I4/mmm	Al ₄ Ba	a = 0.3852	1985Jei
(τ_1)	40 P				c = 1.0314	
$Ce_2Fe_{12}P_7$	9.5 Ce	hP21	$P\overline{6}$	$Zr_2Fe_{12}P_7$	a = 0.9135	1984Jei
(τ_2)	33.3 P				c = 0.3677	
CeFe ₄ P ₁₂	5.9 Ce	<i>cI</i> 34	Im3	LaFe ₄ P ₁₂	a = 0.7792	1977Jei
(τ_3)	70.6 P					

 Table 1
 Ce-Fe-P
 Crystal Structure and Lattice Parameter Data

References

- 1977, Jei: W. Jeitschko and D. Braun: "LaFe₄P₁₂ with Filled CoAs₃ Type Structure and Isotypic Lanthanoid-Transition Metal Polyphosphides," Acta Crsytallogr., B, 1977, 33B(11), pp. 3401-06. 1982Kub: O. Kubaschewski: "Iron-Phosphorus" in Iron-Binary
- Phase Diagrams, Springer-Verlag, Berlin, 1982, pp. 84-86.
- 1984Jei: W. Jeitschko, U. Meisen, and U.D. Scholtz: "Ternary Lanthanoid Iron Phosphides With YCo5P3 and Zr2Fe12P7 Type Structures," J. Solid State Chem., 1984, 55, pp. 331-36.

1985Jei: W. Jeitschko, U. Meisen, M.H. Moeller, and M. Reehius:

"On LaCo₂P₂ and Other New Compounds with ThCr₂Si₂ and CaBe2Ge2 Type Structure," Z. Anorg. Allg. Chem., 1985, 527, pp. 73-84 (in German).

- 1993Zha: W. Zhang, G. Liu, and K. Han: "Ce-Fe (Cerium-Iron)" in Phase Diagrams of Binary Iron Alloys, H. Okamoto, ed., ASM International Materials Park, OH, 1993, pp. 89-92.
- 1997Chi: S.I. Chikhrii and O.V. Shevchuk: "Phase Equilibria in the (La,Ce)-Fe-P Systems," Zhur. Neorg. Khim., 1997, 42(8), pp. 1384-86 (in Russian); TR: Russ. J. Inorg. Chem., 1997, 42(8), pp. 1258-60.